Итак, камраден.
Существуют многие способы обеззараживания воды. Некоторые из них:
Обеззараживание воды ультрафиолетовым (УФ) облучением. Обеззараживание воды УФ-лучами относится к физическим (безреагентным) методам. Безреагентные методы имеют ряд преимуществ, при их применении не изменяется состав и свойства воды, не появляются неприятные привкусы и запахи, отпадает необходимость в транспортировке и хранении реагентов.
Бактерицидное действие оказывают участок УФ-части оптического спектра в диапазоне волн от 200 до 295 нм. Максимум бактерицидного действия приходится на 260 нм. Такие лучи проникают через 25-сантиметровый слой прозрачной и бесцветной воды. Обеззараживается вода УФ-лучами достаточно быстро. После 1—2 мин облучения гибнут вегетативные формы патогенных микроорганизмов. Мутность и особенно цветность, окраска и соли железа, снижая проницаемость воды для бактерицидных УФ-лучей, замедляют этот процесс. То есть предпосылкой надежного обеззараживания воды УФ-лучами является предварительное ее осветление и обесцвечивание.
Обеззараживают УФ-облучением с помощью бактерицидных ламп преимущественно воды подземных водоисточников, коли-индекс которых не более 1000 КОЕ/л, содержание железа — не более 0,3 мг/л.
Если продуктивность водопроводной станции до 30 м3/ч, применяют установки с непогружным источником облучения в виде аргонно-ртутных ламп низкого давления. Если продуктивность станции составляет 30—150 м3/ч, то применяют установки с погружными ртут-но-кварцевыми лампами высокого давления.
При использовании аргонно-ртутных ламп низкого давления в воде не образуются токсические побочные продукты, тогда как под действием ртутно-кварцевых ламп высокого давления химический состав воды может изменяться за счет фотохимических превращений растворенных в воде веществ.
Обеззараживающий эффект бактерицидных УФ-лучей обусловлен преимущественно фотохимическими реакциями, вследствие чего возникают необратимые повреждения ДНК бактериальной клетки. Кроме ДНК, УФ-лучи повреждают и другие структурные части клетки, в частности рРНК, клеточные мембраны. Выход бактерицидной энергии составляет 11% при оптимальной длине большей части излучаемых волн.
Таким образом, бактерицидные лучи не денатурируют воду и не изменяют ее органолептических свойств, а также имеют более широкий спектр абиотического действия — они губительно влияют на споры, вирусы и яйца гельминтов, устойчивые к хлору. В то же время использование этого метода обеззараживания воды усложняет оперативный контроль эффективности, так как результаты определения микробного числа и коли-индекса воды можно получить только через 24 ч инкубации посевов, а экспрессного метода, который подобен определению остаточного свободного или связанного хлора или остаточного озона, в данном случае не существует.
Обеззараживание воды ультразвуком. Бактерицидное действие ультразвука объясняется главным образом механическим разрушением бактерий в ультразвуковом поле. Данные электронной микроскопии свидетельствуют о разрушении клеточной оболочки бактерий. Бактерицидный эффект ультразвука не зависит от мутности (в пределах до 50 мг/л) и цветности воды. Он распространяется как на вегетативные, так и на споровые формы микроорганизмов и зависит лишь от интенсивности колебаний.
Ультразвуковые колебания, которые могут быть использованы для обеззараживания воды, получают пьезоэлектрическим или магнитострикционным путем. Чтобы получить воду, отвечающую требованиям ГОСТа 2874-82"Вода питьевая. Гигиенические требования и контроль за качеством", интенсивность ультразвука должна составлять около 2 Вт/см2, частота колебаний — 48 кГц в 1 с. Ультразвук частотой20—30кГц уничтожает бактерии за2—5с.
Термическое обеззараживание воды. Метод используют для обеззараживания небольшого количества воды в санаториях, больницах, на пароходах, поездах и пр. Полное обеззараживание воды и гибель патогенных бактерий достигается через 5—10 мин кипячения воды. Для этого типа обеззараживания используют специальные типы кипятильников.
Обеззараживание рентгеновским излучением. Метод предусматривает облучение воды коротковолновым рентгеновским излучением длиной волны 60—100 нм. Коротковолновое излучение глубоко проникает в бактериальные клетки, обусловливает их значительные изменения и ионизацию. Метод изу¬ чен недостаточно.
Обеззараживание вакуумированием. Метод предусматривает инактивацию бактерий и вирусов при пониженном давлении. Полный бактерицидный эффект достигается в течение 15—20 мин. Оптимальный режим обработки — при температуре 20—60 °С и давлении 2,2—13,3 кПа.
Мною выбрана очистка активным хлором, как самая простая и недорогая.
Рассчитывать на успешное обеззараживание воды можно лишь при наличии некоторого избытка хлора по отношению к количеству, которое поглощается бактериями и различными соединениями, содержащимися в воде. Эффективной является доза активного хлора, равная суммарному количеству поглощенного и остаточного хлора. С присутствием в воде остаточного хлора (или, как его еще называют, избыточного) связано представление об эффективности обеззараживания воды.
При хлорировании воды жидким хлором, кальция и натрия гипохлоритами, хлорной известью 30-минутный контакт обеспечивает надежный обеззараживающий эффект при концентрации остаточного хлора не меньше 0,3 мг/л. Но при хлорировании с преаммонизацией контакт должен быть на протяжении 1—2 ч, а эффективность обеззараживания будет гарантированной при наличии остаточного связанного хлора в концентрации не менее 0,8 мг/л.
Хлор и хлорсодержащие соединения в значительной мере влияют на органолептические свойства питьевой воды (запах, привкус), а в определенных концентрациях раздражают слизистые оболочки ротовой полости и желудка. Предельная концентрация остаточного хлора, при которой питьевая вода не приобретает хлорного запаха и привкуса, установлена для свободного хлора на уровне 0,5 мг/л, а для связанного — 1,2 мг/л. По токсикологическим признакам предельной концентрацией активного хлора в питьевой воде является 2,5 мг/л'.
Следовательно, для обеззараживания воды необходимо добавить такое количество хлорсодержащего препарата, чтобы после обработки вода содержала 0,3—0,5 мг/л остаточного свободного или 0,8—1,2 мг/л остаточного связанного хлора. Такой избыток активного хлора не ухудшает вкуса воды, не вредит здоровью, но гарантирует ее надежное обеззараживание.
Таким образом, для эффективного обеззараживания к воде добавляют дозу активного хлора, равную сумме хлорпоглощаемости и остаточного активного хлора. Эта доза называется хлорпотребностью воды.
Хлорпотребностъ воды — это количество активного хлора (в миллиграммах), необходимое для эффективного обеззараживания 1 л воды и обеспечивающее содержание остаточного свободного хлора в пределах 0,3—0,5 мг/л после 30-минутного контакта с водой, или количество остаточного связанного хлора в пределах 0,8—1,2 мг после 60-минутного контакта. Содержание остаточного активного хлора контролируют после резервуаров чистой воды перед подачей в водопроводную сеть. Поскольку хлорпоглощаемость воды зависит от ее состава и является неодинаковой для воды из разных источников, то в каждом случае хлорпотребность определяют экспериментально путем пробного хлорирования. Ориентировочно хлорпотребность осветленной и обесцвеченной коагуляцией, отстаиванием и фильтрацией речной воды колеблется в пределах 2—3 мг/л (иногда — до 5 мг/л), воды подземных межпластовых вод — в пределах 0,7—1 мг/л.
При снижении температуры воды до 0—4 °С уменьшается бактерицидный эффект хлора.
На бактерицидный эффект хлорирования значительно воздействуют доза реагента и продолжительность контакта: бактерицидный эффект возрастает при повышении дозы и увеличении продолжительности действия активного хлора.
Суперхлорирование (перехлорирование) является способом обеззараживания воды, при котором используются повышенные дозы активного хлора (5—20 мг/л). Эти дозы фактически являются послепереломными. К тому же они значительно превышают хлорпотребность природной воды и обусловливают наличие в ней высоких (свыше 0,5 мг/л) концентраций остаточного свободного хлора. Поэтому метод суперхлорирования не требует предварительного определения хлорпотребности воды и тщательного подбора дозы активного хлора, однако после обеззараживания необходимо удалить избыточный свободный хлор, т.к. он делает воду непригодной для употребления вследствие ухудшения ее органолептических свойств (резкий запах хлора).
Такой процесс называется
дехлорированием. Если избыток остаточного хлора невелик, его можно удалить путем аэрации. В остальных случаях воду очищают, фильтруя через слой активированного угля или с помощью химических методов, таких, как обработка натрия гипосульфитом (тиосульфатом), натрия бисульфитом, сернистым ангидридом (серы диоксидом), железа сульфатом. На практике применяют преимущественно натрия гипосульфит (тиосульфат).
Суперхлорирование используют при особой эпидемиологической обстановке, при невозможности определить хлорпотребность воды и обеспечить достаточное время контакта хлора с водой, а также с целью предупреждения появления запахов воды и борьбы с ними. Этот метод удобен в военно-полевых условиях, при чрезвычайных ситуациях.
Суперхлорирование эффективно обеспечивает надежное обеззараживание даже мутной воды. От высоких доз активного хлора гибнут устойчивые к действию дезинфектантов возбудители, такие, как риккетсии Бернетта, цисты дизентерийной амебы, микобактерии туберкулеза и вирусы. Но даже такие дозы хлора не могут надежно обеззаразить воду от спор сибирской язвы и яиц гельминтов.
Из технических средств, пригодных для улучшения качества воды в полевых условиях, особого внимания заслуживают тканево-угольные фильтры (ТУФ): портативные, транспортабельные, простые и высокопродуктивные.
ТУФ конструкции М.Н. Клюканова (малая модель):
1 — резервуар для хлорирования и коагуляции;
2 — тканевой мешок для задержки взвешенных частиц;
3 — активированный уголь для удаления из воды избытка хлора;
4 — металлическая сетка
ТУФ конструкции М.Н. Клюканова предназначены для временного использования (водоснабжения в полевых условиях, сельской местности, на новостройках, во время экспедиций).
Очищают и обеззараживают воду по методике М.Н. Клюканова путем одновременной коагуляции и дезинфекции повышенными дозами хлора (суперхлорирование) с дальнейшей фильтрацией через ТУФ.
На тканевом фильтрующем слое задерживаются взвешенные частиц, то есть достигается осветление и обесцвечивание воды, а на угольном фильтрующем слое осуществляется дехлорирование.
Для коагуляции используют алюминия сульфат — A12(S04)3 в количестве 100-200 мг/л. Доза активного хлора для обеззараживания воды (суперхлорирование) составляет не менее 50 мг/л.
В воду одновременно вносят коагулянт и хлорную известь или ДТСГК (двутретиосновную соль гипохлорита кальция) в дозах 150 и 50 мг/л соответственно. В этом случае на коагуляцию не влияет щелочность воды.
Обычно коагуляция происходит по реакции алюминия сульфата с гидрокарбонатами воды, которых должно быть не менее 2 мг-экв/л.В других случаях воду необходимо подщелачивать.
Через 15 мин после обработки приведенными выше реактивами отстоянную воду фильтруют через ТУФ. В очищенной воде определяют остаточный хлор и органолептические свойства.
Но это всё для общего развития.
Применительно к тематике палаты, из всего многообразия способов очистки воды я для себя выбираю следующий алгоритм:
1. Предварительная очистка фильтрованием через ткань (песок, гравий, выбрать по вкусу).
2. Хлорирование препаратом «Септолит-ДХЦ» в течение не менее 30 минут, перемешиваем воду в процессе хлорирования.
Дозировка:
- либо суперхлорирование (в угрожающий период) с дозой активного хлора 50 мг/л
- в повседневной деятельности руководствуюсь алгоритмом от «Акватабс»: В три литровые емкости наливают воду, которую следует обеззараживать. Берут таблетки соответственно степени мутности воды. В чистую воду добавляют 2 мг, если во все три емкости налита мутная, фильтрованная или цветная вода - 5 мг. Везде добавляют средство, содержание хлора в котором одинаково. Все тщательно перемешав, емкости оставляют на 30 минут. Через полчаса дозу определяют по запаху хлора. В той емкости, в которой запах чувствуется, но не резкий, дозировка правильная. Если такой банки нет, соответственно, количество или уменьшают, или увеличивают в два раза.
Для примерного расчёта потребности в хлоре использую табличку
При использовании других средств можно проводить расчет по следующей формуле:
Х =Б *100/А, где
Х - количество воды (мл), которое необходимо взять для получения рабочего раствора с требуемым содержанием активного хлора;
Б - содержание активного хлора в таблетке, граммы;
А - концентрация активного хлора в рабочем растворе, %.
Например: необходимо приготовить 0,004 % раствор (А), имея таблетку «АКВАТАБС 500 мг», содержащую 300 мг, т.е. 0,3 г активного хлора (Б).
То есть для приготовления 0,004 % раствора необходимо взять 7,5 л (7500 мл) воды и растворить в ней 1 таблетку «АКВАТАБС 500 мг». Если необходимо приготовить 15 л такого раствора, то в этом объеме воды следует растворить 2 таблетки.
Х =0,3*100/0,004= 7500 мл (7,5 л)
3. Дехлорирование (освобождение от свободного остаточного хлора): для удаления избытка хлора и возможных побочных хлорсодержащих углеводородов после обеззараживания - фильтрация воды через активированный уголь.
4. Кипячение в течение 20 минут.
Почему «Септолит-ДХЦ»? Активное вещество идентично «Акватабсу» (натриевая соль дихлоризоциануровой кислоты 81 %), сухая форма в таблетках, срок годности – 5 лет. Цена – около 350 рублей за килограмм.
Ещё раз, я не научно-исследовательский институт, не лаборатория и не химик. Но для себя принимаю этот алгоритм действий. Соответственно, следовать ему или нет - дело и ответственность лично каждого.